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The steady two-dimensional flow of an inviscid incompressible fluid of variable 
density is considered in a long channel, bounded above by a rigid horizontal 
plane and below by an obstacle. For certain variations with height of the speed 
and density in the incident stream, the governing equation is the reduced wave 
equation. Drazin & Moore (1967) have recently used this fact to develop a wave- 
guide analogy. In this note the wave-guide analogy is further developed and 
several uniqueness theorems obtained. When the obstacle satisfies a certain 
convexity condition it is shown that the upstream conditions and the obstacle 
uniquely determine the flow; that is, there is no critical internal Froude number 
or obstacle height for which the problem fails to be well posed. 

1. Introduction 
The flow past an obstacle of a horizontal stream of fluid of variable density 

and speed and subject to a gravitational force is of considerable importance in 
geophysics. Long (1953, 1954, 1955) has made the important discovery that for 
the steady, two-dimensional flow of an inviscid, incompressible fluid the govern- 
ing equation becomes the reduced wave equation (i.e. Helmholtz’s equation) for 
certain variations with height of the speed and density in the incident stream. 
As Drazin & Moore (1967) have recently pointed out, this makes available the 
powerful techniques of diffraction theory. 

The flow is in a long channel, bounded above by a rigid horizontal plane and 
below by an obstacle; far upstream it will be assumed that the flow is unperturbed. 
This ‘lee-wave ’ condition has not been universally accepted; Long (1955) him- 
self has suggested that for sufficiently small internal Froude numbers (cf. (2.5), 
i.e. intense stratification), or for sufficiently high obstacles, the disturbance might 
extend far upstream and so ‘block ’ the flow. However, Long’s argument assumes 
that the flow can be continued analytically into the interior of the obstacle, 
whereas Yih (1960) and others have shown that flows can be constructed by 
placing singularities within the obstacle. Trustrum (1964) considered the de- 
velopment of an unsteady flow using an ‘Oseen’ type linearization, and her 
results support the possibility of blocking. On the other hand, Drazin & Moore 
(1967) have used a wave-guide analogy to suggest that the ‘lee-wave ’ condition 
makes the problem a well-posed one, and that ‘blocking’ is associated with an 
energy restriction (Sheppard 1956). 
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In  this note the wave-guide analogy is further developed and some of the 
conjectures of Drazin & Moore (1967) are established. In  $ 2  the problem is for- 
mulated and the equation of motion and the boundary conditions are stated. In  
$ 3  it  is shown that the stratified flow problem may be constructed in a unique 
way from a set of associated wave-guide problems, and that the downstream 
lee-waves are uniquely determined by the obstacle and the upstream Conditions. 
In  $ 4  two uniqueness theorems are presented. First, a result of Long’s (1953) is 
improved to show that for sufficiently large Froude numbers (i.e. sufficiently 
small k, see (2.5)) the flow is uniquely determined. Secondly, it is shown that 
if the obstacle satisfies a certain convexity condition (see (4.7)) then the flow is 
uniquely determined by the upstream conditions and the obstacle; this result 
holds for all Froude numbers and is independent of the height of the obstacle. 
The convexity condition (4.7) includes all obstacles so far treated (e.g. Yih 1965). 
The flow is assumed to  be smooth so that the possibility of a stagnant region 
occurring is explicitly excluded (Kao 1965); also the fact that the flow is assumed 
steady and the ‘lee-wave’ condition has been used prevents a direct conflict 
with the work of Trustrum (1964). Our concern has been to establish when the 
‘lee-wave ’ condition, together with Long’s equation, presents a well-posed 
problem in the mathematical sense. No attempt is made to establish existence 
theorems, although the validity of the wave-guide analogy supports the con- 
jecture that solutions will exist for all Froude numbers and obstacle heights. 

2. Equation of motion 
We consider the two-dimensional steady flow of inviscid incompressible fluid 

of variable density p* (with velocity V* and pressure p* at the point r*). The 
stream runs in a long channel whose upper boundary is the rigid horizontal plane 
y* = d and whose lower boundary is the rigid obstacle y* = h*(x*), where 
h*(x*) = 0 for sufficiently large Ix*l. Far upstream (i.e. as x* --f -a) the flow 
is horizontal (and in the positive x*-direction) with a prescribed speed U*,(y*) 
and density pz(y*) .  

If U ,  po are characteristic scales for the upstream speed and density, we intro- 
duce the dimensionless variables 

m-* P* r = -- 

where in the second equation, we have incorporated Yih’s transformation 
(cf. Yih 1965, p. 5). Since the flow is two-dimensional, a stream function $(x, y) 
may be defined so that 

where u and v are the x- and y-components respectively of v. The density and the 
head H*, where H* = p* + &*Iv*Iz +gp*y*, are functions of $ only and are to be 
determined from the prescribed conditions upstream. Following Long ( 1955) we 
choose these conditions so that 

u = a ~ p y ,  v = -a@lax, (2.2) 

P 3 U 3  = poUZ, w!aldY* = -rBP,, (2.3) 
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where /3 is a constant. The equation governing balance of momentum is then the 
linear equation 

V2$+k2($-y) = 0, (2.4) 

where k2 = g/3d2/U2n2 (2.5) 
is the reciprocal of an internal Froude number (cf. Yih 1965, p. 83). For the inci- 
dent stream to be stable, /3 and hence k2 are positive. If 

4 = Y-$., (2.6) 

(2-7) 

then # satisfies the reduced wave equation 

Vz# + k2# = 0. 

The top (y = n) and bottom y = h(x), where h*(s*) = ( n 
are the streamlines $ = rr and $ = 0 respectively. Far upstream the conditions 
(2.3) must be satisfied, so that $+y as x+ -m; far downstream $ is to be 
bounded. These lead to the following boundary conditions for #: 

# = 0 when y = n ,  # = h(x) when y =  h(x), (2.8) 

# + O  as x+-co, #isbounded as x + + m .  (2.9) 

3. Associated wave-guide problems 
We shall assume that the solutions of (2.7) are complex-valued functions which 

are twice continuously differentiable within the channel and whose first de- 
rivatives are continuous up to the channel boundaries. Let h(x) = 0 for 1x1 > Lo; 
then in these regions the solutions may be obtained from Fourier analysis: 

00 

# = x#$(x)sinny for 1x1 > Lo, (3.1) 

where 

and $2, #; refer to x > Lo and x < -Lo respectively. The Fourier series for the 
derivatives of 4 may be obtained by differentiating (3.1) term-by-term; all the 
series involved are uniformly convergent in y, for each fixed x. If( 2.7) is multiplied 
by sin ny and then integrated with respect toy from 0 ton, the following equations 
are obtained: 

d x + ( k 2 - n 2 ) # &  ax2 = 0 (n = 1 ,2 ,3 ,  ...). (3.3) 

Then if K < k < K +  1 for some non-negative integer K ,  (3.3) has the solutions 

#$ = A$cos{(k2-n2)b}+B$sin{(k2-n2)kcX) (1 < n < K ) ,  (3.4) 

and $&= A$exp{-(n2-k2)*Ixl}+B$exp{(n2-lc2)~1x1} (n > K + 1 ) ,  (3.5) 

where A&, I32 are arbitrary constants. The sinusoidal solutions (3.4) are said 
to be subcritical and the exponential solutions supercritical (cf. Benjamin 1966). 
The cases where k is an integer correspond to wave-guide resonance between the 
walls y = 0, n; the flow is said to be critical and no steady flow can be anticipated. 
These cases are therefore excluded. 
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Application of the upstream condition (2.9) shows that A; = B; = 0 for 
1 6 n 6 K, and B; = 0 for n 2 K + 1 ; the downstream condition shows that 
B , f = O f o r n k K + l .  

Following Drazin & Moore (1967) we propose to treat the stratified flow 
problem of 5 2 by developing a wave-guide analogy, although the treatment given 
here differs in some respects from theirs. We define 

Wn,Vn = exp{+i(k2-n2)Jlxl}sinny (1 < n 6 K), (3-6) 
En = exp{-(n2-k2)ilxl}sinny (n >, K + l ) ,  (3.7) 

where W,, V, correspond to outgoing and incoming waves respectively. Next we 
introduce the following wave-guide emission and scattering problems. 

is a complex-valued solution of (2.7) which satisfies the boundary 
conditions 

#m = 0 when y = n, #m = h(x) when y = h(x), ( 3 . 8 ~ )  

$(a= B$Wn+ B$E, for 1x1 >Lo; (3.8b) 

( fJm) ,  (1 < m < K ) :  $Cm) is a complex-valued solution of (2.7) which satisfies the 
boundary conditions 

(E) :  

K 00 

n= 1 n = K + 1  

$(m) = 0 when y = 7~ and when y = h(x), (3.9a) 

(3.9b) I 
K K m 

$(m) = x AmnVn+ 2 CL,W,+ x C&,E, for x > Lo, 

qYm) = Wm+ x C&,E, for x < -Lo, 

n= 1 n= 1 n = K + 1  

m 

n = K + l  

where A,, B$, C&n are constants which are to be determined. The condition 
(3.8b) is the appropriate form of the Sommerfeld radiation condition in this 
context, and ensures that all waves are outgoing at infinity. The condition (3.9 b) 
is atypical for a scattering problem; however, it is the most convenient for our 
purposes, and we shall show later that it is equivalent to the more usual scattering 
problem in which the incident wave is prescribed and it is the outgoing waves 
which are to be determined. If we put 

K 

(3.10) 

then $(F) has no outgoing (or incoming) waves in the region x < -Lo, and since 
the governing equation (2.7) and the boundary conditions (3.9) are linear, is 
clearly a solution to the stratified flow problem of $ 2  (cf. Drazin & Moore 1967). 
Clearly (3.10) is the only linear combination of 9" and @m) which has no waves 
in x < -Lo (since the functions W, are linearly independent), and so $(m will 
be uniquely determined by (2.8) and (2.9) when #m and #{m) are uniquely de- 
termined by (3.8) and (3.9) respectively. 

If q5 is a complex-valued solution of (2.7) in a region 8, whose boundary C is 
piecewise smooth, then an application of the Gauss divergence theorem shows 
that 

(3.11) 
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where a/& denotes differentiation along the outward normal to S. Let S be that 
part of the channel for which 1x1 < L, where L > Lo (see figure l), andlet 4 satisfy 
the following boundary conditions: 

4 = 0 when y = n and when y = h(x), (3.12a) 

E m 

$ =  c D;Wn+ C D;E, for x <  -Lo. 
n = l  n = K + 1  

(3.12 b) 1 
y=7l 

S 

x = L  x = - L  

FIGURE 1. The region of integration S, for a typical obstacle which satisfies the convexity 
condition. 

Then the integrals over C reduce to integrals over the strips 1x1 = L, and these 
may be evaluated by applying Parseval's formula for Fourier series (e.g. Zyg- 
mund 1959, pp. 13,37);  for reasons of economy of space only one such calculation 
is included here : 

for x = L 

Thus it follows from (3.11) and (3.12)) using expressions such as (3.13) that 

E K 

n= 1 n= 1 
c (k2-n2)&IAn12 = C (k2-nnz)B(IDn+12+ IDz12). (3.14) 

This equation expresses conservation of energy in the wave-guide. 
To establish uniqueness for the emission problem ( E )  it must be shown that 

if q5 is a complex-valued solution to (2.7) which satisfies ( 3 . 1 2 ~ )  and (3.126) with 
A ,  = 0, then q5 is identically zero. But when An = 0,  it follows from (3.14) that 
D,+ = z); = 0. Thus the coefficients B,i for 1 6 n 6 K of (3.8b) are uniquely 
determined by the bottom topography. We defer until the next section the 
question of when q5(m (and hence the remaining B k )  are uniquely determined. 

Next we turn our attention to the scattering problems (8,). If {F,} (1 < m < K )  
are a set of arbitrary constants, put 

K 

m= 1 
4 = C Fm#(m'. 
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Then 
K K 

m = l  m = l  
A ,  = C AmwFm, Dt = C&,Fm, D; = Fn for 1 < n < K ,  

and substitution into (3.14) shows that 

(3.15) 

cannot all vanish unless all the members of the set {Fn} are zero. It follows that 

deb [Am,]* 8 (3.16) 

and so the inverse of the matrix [A,,] exists; we let A;; denote the components 
of this inverse. One consequence of (3.16) is that there is a unique set of co- 
efficients {Fm} such that the set 

for some r,  1 6 r Q K ;  this establishes the equivalence of the problems S ,  to the 
scattering problem when an incident wave Vr is prescribed in x > Lo. 

Now suppose that #m) is also a solution of Sm with coefficients Am,, c&,, and 
that q5 is the difference between two solutions of the scattering problem when the 
incident wave V ,  is prescribed in x > Lo. Thus 

K K 

m = l  m= 1 
$ = 2 A;:$@)- C, X;;#m) (1 Q r Q K ) ,  

so that 

A ,  = 0, D$ = A;ACA,- C &,c&,, D; = A;:-A&: for 1 < n 6 K.  

But when A ,  = 0, it follows from (3.14) that D$ = D; = 0, and so 

K K 

m = l  m = l  

K 

m = l  
A,, = C (CAn-c&w)AGA = 07 

or C& = c$, for 1 < r , n  Q K 

since the matrix [A,,] is non-singular. Thus the wave terms of $(m) are uniquely 
determined; it follows from (3.10) that the lee-wave components (i.e. the sinu- 
soidal terms (3.4)) of #F) are uniquely determined by the upstream conditions 
and the bottom topography. 

The analysis so far demonstrates the validity of the wave-guide analogy, thus 
fulfilling a conjecture of Drazin & Moore (1967). It has also been shown that the 
solution to ( E )  and (8,) (and hence to the stratified flow problem) will be unique 
if and only if there are no eigensolutions; we call q5 an eigensolution if it is a 
solution of the following problem 
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( U ) :  q5 is a non-zero complex-valued solution of (2.7) which satisfies the 

q5 = 0 when y =  7r andwhen y =  h(x), (3.17 a) 

boundary conditions 

m 

q5 = C A$En for 1x1 > Lo, 
n = K + l  

for some constants A,+. 

(3.17 b )  

4. Uniqueness theorems 
It is to be expected that, in general, eigensolutions will exist. Thus to establish 

uniqueness, further restrictions must be placed on one or both of k and h(x). Two 
theorems are presented here: first, if k is suitably small then there is uniqueness 
for any bottom topography (provided that h(x) = 0 for 1x1 > Lo); secondly, 
if the obstacle satisfies the convexity condition (4.7) then there is uniqueness 
for all (non-integral) k.  

First we consider the case when 0 < k < 1 (i.e. K = 0). We commence with the 
identity (cf. Long 1953) 

where q5 is a complex-valued solution of (2.7) in a region S whose boundary C is 
piece-wise smooth, and 7 is a twice continuously differentiable real function in S 
whose first derivatives are continuous up to C. Let S be that part of the channel 
for which 1x1 < L, where L > Lo, and let q5 be a solution of (U). Then the integrals 
over C reduce to integrals over the strips 1x1 = L, and an analysis similar to that 
leading to (3.14) shows that 

k is now restricted so that 0 6 k(n- - y,) < n-( 1 - E ) ,  (4.3) 

where 

and where e is a small positive constant chosen so that k < 1 -e ;  note that if 
h(x) 2 0 then ym = 0. If we put 

7 = log {sin (k(y - Y,) + 4 1 ,  (4.4) 

k2+V27+lgrad7I2=O forall x , y , < y < n .  (4.5) 

then 7 is twice continuously differentiable in S, @/ax = 0 and 

The second integral on the left-hand side of (4.1) now vanishes identically (this 
device is due to Long (1953); see also Frank & von Mises (1961, p. 784). Since the 
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second integral on the right-hand side of (4.1) is also identically zero, it follows 
from (4.2) that the right-hand side of (4.1) is non-positive, and hence 

n n  

J J lgrad#-$gradq12dS = 0. 
s 

( 4 4  

From this equation it may easily be shown that $ is identically zero. Thus when 
k is small enough to satisfy (4.3), the upstream conditions and the bottom 
topography uniquely determine the flow in the entire channel. This result? is an 
improved version of a theorem of Long (1953), who considered solutions of (2.7) 
in a channel of finite length, with conditions of periodicity a t  the ends. 

Next we turn our attention to the case when Ic is unrestricted (but not an 
integer)? and h(x) satisfies the following convexity condition. We choose the 
origin of x so that h(0) is a maximum of h(x), and require that 

xaxlav G 0, (4.7) 

i.e. the outward normal to the obstacle makes an angle of not less than 90" with 
the unit vector which is parallel to the x-axis, and points upstream for x < 0 
and downstream for x > 0 (see figure 1). We commence with the identity 

where C is the piece-wise smooth boundary of X, # is a twice continuously differ- 
entiable function in S whose f i s t  derivatives are continuous up to C, and P is a 
differentiable function of x only which is continuous up to C (cf. similar identities 
used by Rellich (1943, 1948, p. 329), and Jones (1953)). Let X be that part of 
the channel for which 1x1 < L, and let q5 be a solution of ( U ) ;  if we put F = x 
and combine (4.8) with (4.1) when q = 0, then 

From (4.2) the first integral on the right-hand side of (4.9) is non-positive, and 
from the convexity condition (4.7) the third integral is also non-positive. The 
second integral is then evaluated from Parseval's formula, and it is found that 

(4.10) 

Indeed this integral contains only the coefficients corresponding to wave terms 
in #, and these are all absent when # is a solution of ( U ) .  Hence 

(4.11) 

t This uniqueness theorem has also been obtained by Drazin & Moore (unpublished) 
for tho case h(z) > 0, using a different method. 
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and it follows easily that q5 is identically zero. Thus when the obstacle satisfies 
the convexity condition (4.7) the flow in the entire channel is uniquely deter- 
mined by the upstream conditions and the bottom topography, for all (non- 
integral) values of k; also the uniqueness holds no matter how high the obstacle 
is, or how long. 
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